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Density fluctuations and entropy
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A functional for the entropy that is asymptotically correct both in the high- and low-density limits is
proposed. The new form isS5S( id)1S( ln)1S(r )1S(c), where the termS(c) depends on thep-body density

fluctuationsap and has the formS(c)/k5^N&$ ln 2211(p52
` (ln 2)p/p! ap2@exp(a221)2a2#%1Ŝ. Ŝ renormal-

izes the ring approximationS(r ). This result is obtained by analyzing the functional dependence of the most
general expression of the entropy. Two main results forS(c) are proved:~i! In the thermodynamic limit it is
only a functional of the one-body distribution function and~ii ! by summing to infinite order the leading
contributions in the density a numerical expression for the entropy@Eq. ~33!# with a renormalized ring ap-
proximation is obtained. The relation of these results to the incompressible approximation for the entropy is
discussed and preliminary numerical results on hard spheres are presented.

PACS number~s!: 05.20.2y, 65.50.1m
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I. INTRODUCTION

Entropy is one of the very important and challenging th
modynamic quantities in statistical mechanics because it
pends on all then-particle distribution functions. The prob
lem is to obtain equations that are both accurate
manageable from a theoretical and numerical point of vie
Among the exact expressions we cite the classical work
Nettleton and Green@1# and, more recently, the ones of on
of us ~J.A.H.!, Pouskari, and Prestipino and Giaquinta@2–4#.
Approximate expressions have also been derived@3,5–8#. In
@5# we have shown how an infinite subset of terms~depen-
dent exclusively on the one- and two-body distribution fun
tions! can be analytically summed, giving rise to the s
called ring approximation~RA! and, through a minimization
of the free energy functional, the well-known HNC approx
mation @9# is obtained as an optimized superposition a
proximation. Later on, Bushet al. @6# derived sets of integra
equations by analyzing several levels of approximation to
grand potential function and, in a recent and very interes
article, Puoskari@3# extends the RA to three-particle func
tions, showing how the HNC2 equations either of the W
theim @10# or Baxter@11# variety can be obtained. Barany
and Evans@7# showed that, even though the derivations a
done in the grand canonical ensemble, the entropy equa
are, in fact, ensemble invariants if local expressions are u
for the entropy. In this way, the comparison with canoni
ensemble numerical simulations is justified. They also a
lyze the convergence range of some needed integrals s
ing how this range increases at high densities. Wallace@8#
also worked with the same type of expression and, by a
lyzing the behavior of density fluctuations, proposed an
compressible approximation for the entropy of dense flu
~which, as Wallace himself states, is decidedly wrong in
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low-density regime!. He then concluded that the dilute ga
and dense liquid regimes occupy different regions of
phase space. These conclusions have been criticized@7#.
Laird and Haymet@12# have extended the RA to mixture
and applied it to electrolytes. They found that the corr
Debye-Huckel expression for the entropy in the lo
concentration limit is obtained when the RA is include
They have also discussed the incompressible approxima
in dense fluids@13#, and proposed an expression that diffe
from the one of Wallace, and applied it with good numeric
results.

Summarizing, these works show that, at low densiti
inclusion of the RA gives a very accurate entropy equat
and the incompressible approximation is hopelessly wro
while, at high densities, the ring term overestimates the
tropy and the incompressible approximation is reasona
accurate. It has been suggested that more than two-body
relations must be incorporated in order to have an accu
expansion and, in this respect, Puoskari’s work@3# is quite
promising. It is the purpose of this article to elaborate on
compressibility-related contribution to entropy and impro
the entropy expansion when truncated to the pair distribu
level. In Sec. II we discuss the conceptual structure of
entropy when written as a functional of then-body distribu-
tion function. In Sec. III it is shown by functional differen
tiation that the compressibility-related contribution only d
pends on the one-body distribution function as well as
thermodynamic parameters and, in Sec. IV, by summ
three subsets of terms, we shed some light on the natur
the incompressible approximation, show how the corr
low- and high-density limits can also be obtained, a
present our entropy equation@Eq. ~33!#. In Sec. V some nu-
merical issues related to this equation are discussed,
hard spheres~HS! as the prototypical system, showing th
the preliminary numerical results are promising but th
more extensive studies are also needed. In Sec. VI
present our conclusions.
6577 ©2000 The American Physical Society



of
ite
p
ria
is
c

re
e

lo

te
ns

.

l
re

e

A.

f-

r-

in

s

s,

-

it,
u-
a-

ra-

6578 PRE 62J. A. HERNANDO AND L. BLUM
II. ENTROPY STRUCTURE

We can think on two different criteria for the analysis
the entropy. The first one can be called the functional cr
rion; it is the one we take when interested in the entro
dependence on distribution functions, e.g., when a va
tional principle is formulated. The second point of view
the numerical one; i.e., the main goal is numerical accura
It is clear that it is not necessarily true that the same exp
sion will fulfill satisfactorily both goals. In particular, th
incompressible approximation@see Eq.~10!# is numerically
correct at high densities, but has the wrong behavior at
densities and also lacks a sound theoretical foundation.

When the entropy dependence on all then-body distribu-
tion functions is explicitly written, we obtain an approxima
expression with the following distinct structure contributio
@3,5#.

~i! The ideal gas contribution

S( id)

k
5^N&F5

2
2 ln~rl3!G , ~1!

wherer is the number density andl the thermal wavelength
~ii ! The ever present logarithmic contribution

S(ln)

k
52 (

p>1

1

p! E d$p%np~$p%!vp~$p%!, ~2!

where np($p%) is the p-particle distribution function and
vp($p%) the irreduciblep-body contribution to the potentia
of average force. More specifically, the link with the mo
usual notation is

gp~$p%!5
np~$p%!

)
i

n1~ i!
, ~3!

evp($p%)5

np )
$p22%,$p%

np22 )
$p24%,$p

np24•••

)
$p21%,$p%

np21 )
$p23%,$p

np23•••

. ~4!

As usual, we have thatg2511h2 and, through the use of th
generalized superposition approximation~GSA! @14#, we can
write that, e.g.,

g3~$3%!5@11D3~$3%!# )
$2%,$3%

g2~$2%!,

g4~$4%!5@11D4~$4%!#

)
$3%,$4%

g3~$3%!

)
$2%,$4%

g2~$2%!

5@11D4~$4%!# )
$3%,$4%

@11D3~$3%!# )
$2%,$4%

g2~$2%!,

~5!
-
y
-

y.
s-

w

which introduces the family ofDp functions which, when
different from zero, correct for the difference with the GS
They can also be written as

Dp~$p%!5evp($p%)21. ~6!

This S(ln) contribution is the one that, when functionally di
ferentiated, gives rise to the lng contribution in the integral
equations.

~iii ! The ring term, which in its simplest, two-body ve
sion, is

S(r )

k
5

1

2 (
p>3

~21!p21

p E d$p% )
i 51

p

n1~ i!h2~12!h2~23!•••

3h2~p1!, ~7!

and it can be summed in homogeneous systems@5# @see Eq.
~35!#. This term is responsible for the contributionh22c2 in
the integral equations. The three-body version is derived
@3#.

~iv! The compressibility related contribution

S(c)

k
5 (

p>2

1

p! E d$p%)
i 51

p

n1~ i!Dp~$p%!Gp~$np%!, ~8!

Gp~$np%!5

)
$p21%,$p%

gp21 )
$p23%,$p%

gp23•••

)
$p22%,$p%

gp22 )
$p24%,$p%

gp24•••

. ~9!

Its first term is essentially the compressibility (D2[h2) and
the sequence of products in Eq.~9! stops when reaching
either g3 or g2. As far as we know there are no previou
studies of the whole series given in Eq.~8!; the compress-
ibility approximation focuses on the first term of this serie
which, for a one-component homogeneous system, is

S2
(c)

k
5^N&

r

2E drh2~r !5
^N&
2

~211a2!. ~10!

As in the dense liquid limita2!1, the incompressible ap
proximation considersa250 in the wholer-T space.

III. FUNCTIONAL DEPENDENCE

In this section we prove that, in the thermodynamic lim
all the functional derivatives of the compressibility contrib
tion with respect to the distribution functions can be summ
rized in the equation

dS(c)/k

dnp~$p%!
52d1p1O~e2^N&!. ~11!

Therefore,

S(c)

k
52E d$1%n1~$1%!1C~r,T!1O~e2^N&!. ~12!

C is an integration constant as far as the functional integ
tion refers but, in fact, it depends onr,T.
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The derivation is straightforward. The origin of the com
pressibility termS(c) is quite clear and Eqs.~38!–~41! of Ref.
@2# are the equations to look at. Equation~38! is our Eq.~10!
and in Eqs.~39!–~41! we see that each one of them ha
among other terms, the integral*)n1gpd$p%. When the
GSA for gp is used@Eq. ~5!#, the integral decomposes into
sum of two integrals*)n1Gp@11Dp#d$p%. The term with-
out Dp contributes to the ring approximation plus neglect
terms~such as those shown in Ref.@5#! and the term withDp
contributes toS(c).

As Gp can also be written as

Gp~$np%!5

)
$p21%,$p%

np21 )
$p23%,$p%

np23•••

)
$p22%,$p%

np22 )
$p24%,$p%

np24•••

,

using Eqs.~4! and ~6! we conclude that

S(c)

k
5 (

p>2

1

p! E d$p%

3F np2

)
$p21%,$p%

np21 )
$p23%,$p%

np23•••

)
$p22%,$p%

np22 )
$p24%,$p%

np24•••
G .

~13!

It is somewhat clear that each one of these integrals is rel
to p-body density fluctuations but a clearer explanation is
be found in the next section. This explains the origin
naming this contribution as compressibility related. Writt
in this way it is straightforward to show that the function
derivatives are

dS(c)/k

dn1~x!
5 (

p>1
~21!p ^N&p

p! F11OS 1

^N& D G5211O~e2^N&!,

~14!

dS(c)/k

dns~$xs%!
5

1

s! (
p>0

~21!p ^N&p

p! F11OS 1

^N& D G5O~e2^N&!,

~15!

and we arrive at Eq.~11!.
This result shows that, in the thermodynamic limit, t

compressibility term does not contribute to any set of eq
tions we may derive by functional differentiation of a fun
tional that includes the entropy; it only contributes to t
constraint of fixed density. Therefore, while in the set
equations derived from variational principles we can saf
ignore the compressibility term in front of all the other term
when undertaking the numerical computation of the entro
we do not see sound reasons suggesting that we ignore it
us mention that it is possible that, due to partial cance
tions, a simple dismissal of a whole series of terms can
numerically speaking, more effective than a partial summ
tion. The main inconvenience of this dismissal of terms is
uncontrollable nature; i.e., we can never be sure of its ef
tiveness.
,
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IV. SERIES SUMMATION

For this reason we will cut the GSA@Eq. ~4!# after the
third-order terms; in this waygp can be written in two
equivalent forms

gp~$p%!

5H 11 (
$2%#$p%

h2~$2%!1 (
$3%#$p%

h3~$3%!1•••hp~$p%!,

)
$3%#$p%

@11D3~$3%!# )
$2%#$p%

@11h2~$2%!#.

~16!

In Eq. ~13! for the compressibility contribution we wil
sum to infinite order three subsets of terms. These subset
clearly identified in thep53 summand of Eq.~13!, i.e.,

S3
(c)

k
5

1

3!E d$3%)
i 51

3

n1~ i!Fg3~$3%!2 )
$2%#$3%

11h2~$2%!G
5

1

3!E d$3%)
i 51

3

n1~ i!Fh3~$3%!2(
i 51

3

)
kÞ i

h2~ ik !

2h2~12!h2~13!h2~23!G . ~17!

~A! The first subset includes the contribution of the in
grals*hpd$p%,p>2. The series is

Sa
(c)

k
5 (

p52

`
1

p! E d$p%)
i 51

p

n1~ i!hp~$p%!5 (
p52

`
^Cp&
p!

. ~18!

The moment-cumulant relation@2# is

CM~$M%!5hM~$M%!)
i 51

M

n1~ i!

5 (
k51

M

$k$mi%M%~21!k21~k21!!)
i 51

k

nmi
~$mi%!.

~19!

Here, the partition of the coordinate set$M% in k disjoint
subsets$mi%M, 1< i<k is symbolized by$k$mi%M% and
therefore(k51

M $k$mi%M% indicates the sum over all the pa
titions in k subsets and for eachk is 1< i<k. In this way
^Cp& is related to the integralŝnpi

&5*dpinpi
. On the other

hand,^npi
& can be expanded in terms of^Nk& @15#:

^np&5^N~N21!•••~N2p11!&5 (
k51

p

s~p,k!^Nk& ~20!

for p>1, wheres(p,k) are the Stirling numbers of first kind
One of its definitions is that (21)p2ks(p,k) is the number of
permutations ofp elements which contain exactlyk cycles.
They satisfy the recurrence relation

s~p11,k!5s~p,k21!2ps~p,k!, 1<k<p,
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with starting values

s~p,0!5s~0,k!5d0n .

We also define ther-body density fluctuationsa r by

a r5H 1, r 51,

^~N2^N&!r&

^N&
, r .1.

~21!

The first few^Cp& are then expressed in terms of thea r
and Stirling numbers as

^C2&5^N&~211a2!5^N&(
i 51

2

s~2,i !a i , ~22!

^C3&5^N&~223a21a3!5^N&(
i 51

3

s~3,i !a i , ~23!

^C4&5^N&~26111a226a31a4!13^N&2a2
2

5^N&(
i 51

4

s~4,i !a i13^N&2a2
2 . ~24!

The 3̂ N&2a2
2 term and similar ones from higher-order^Cp&

will be included in the next partial sum. In order to sum
infinite order the contribution of eachr-body density fluctua-
tions we need the result@15#

(
t5k

`
s~ t,k!

k!
xk5

@ ln~11x!# t

t!
.

Therefore, thea r contribution is

Gar
5H ln 221, r 51,

~ ln 2!r /r !, r>2,
~25!

and our first partial sum, which includes contributions
infinite order of all thea r , is

Sa
(c)

k
5 (

p52

`
^Cp&
p!

5^N&H ln 2211 (
p52

`
~ ln 2!p

p!
apJ . ~26!

Let us remark on some characteristics of this result:~i!
ln 221 is the contribution in the absence of density fluctu
tions and it is also its high-density limit (ap!1), ~ii ! asap
→1 whenr→0, Eq. ~26! vanishes in the low-density limit
and~iii ! the series is rapidly convergent. Therefore, this s
goes in the right direction to improve on the incompressi
approximation, both in its numerical results and in its the
retical foundation. This analysis makes also clear why t
contribution is referred to as compressibility related. La
the ap are easily expressed as integrals of the correla
functions; the first ones are

a2511
1

^N&E d$2%) n1~ i!h2~$2%!,

a352213a21
1

^N&E d$3%) n1~ i!h3~$3%!.
-

e
-
is
t,
n

~B! When in thepth term of Eq. ~13! the expansions
given in Eqs.~16! are inserted, eachhk ,k,p expanded in
terms ofh2 ,D3 and terms like the 3̂N&2a2

2 which were left
aside in the first partial series included, then all the unc
nected~in the graph theory sense! terms cancel out and th
first two sets of connected diagrams are those depicted in
~17!. We first evaluate the sum of ‘‘star’’ products ofh2
bonds:

Sb
(c)

k
5 (

p53

`

Cp

52 (
p53

`
1

p! (
i 51

p E din1~ i!)
kÞ i

E dkn1~k!h2~ ik !.

~27!

Each summand is easily evaluated as

Cp5
^N&

~p21!!
~211a2!p21,

and the second partial sum is

Sb
(c)

k
52^N&@exp~a221!2a2#. ~28!

Its low- and high-density limits are 0 and2e21, respec-
tively.

~C! This series is a sum of rings very similar to Eq.~7!, its
first term is given in Eq.~17!, and, as the symmetry numbe
of p rings is 2p, it can be written as

Sc
(c)

k
52

1

2 (
p>3

1

pE d$p%)
i 51

p

n1~ i!h2~12!h2~23!•••h2~p1!,

~29!

which can be summed for homogeneous systems in the s
way as the original ring approximation was@5#:

Sc
(c)

k
52

^N&
2r E dkH ln@12rh̃2~k!#2rh̃2~k!2

@rh̃2~k!#2

2 J ,

~30!

whereh̃2(k)5*drh(r )exp(2pik•r … is the Fourier transform
of h2(r ) and the integration is overk space. This contribu-
tion can be added to the original RA giving rise to a ren
malized ring approximation~RRA! S̃(r ), which is

S̃(r )

k
52

1

2 (
p>2

1

pE d$2p%)
i 51

2p

n1~ i!h2~12!

3h2~23!•••h2~2p1!, ~31!

a sum over all even-order rings and, for homogeneous
tems, the result is

S̃(r )

k
5

^N&
2r E dk„ln$12@rh̃2~k!#2%1@rh̃2~k!#2

…. ~32!



q

th

a
d
m
ci

s
g-
w

l
-

o
at
-

-

e
ed
e-

ding

ke

he

-
al
and
il at

e

of
has

the

PRE 62 6581DENSITY FLUCTUATIONS AND ENTROPY
Collecting together the different results obtained, i.e., E
~26!, ~28!, and ~32! with Eqs. ~1! and ~2!, we arrive at an
entropy equation which includes a partial summation of
compressibility related contribution, i.e.,

S

k
5^N&F5

2
2 ln~rl3!G2 (

p>1

1

p! E d$p%np~$p%!vp~$p%!

1
^N&
2r E dk„ln$12@rh̃2~k!#2%1@rh̃2~k!#2

…

1^N&H ln 2211 (
p52

`
~ ln 2!p

p!
apJ

2^N&@exp~a221!2a2#. ~33!

It can be emphasized that this equation is, although
approximate one, a rather general one in the sense that
not depend on any kind of specific, system-related assu
tions. In other words, it can be applied, e.g., to the asso
tive Wertheim-Ornstein-Zernike equation@16,17# as well as
to systems with directional forces@18#.

V. HARD SPHERES

We will discuss some numerical aspects of our propo
by implementing it, in a preliminary way, in the paradi
matic system of liquid state theory, i.e., HS. Essentially,
propose two substitutions:~i! that the term (a221)/2 ~or
21/2 in the incompressible approximation! be replaced by
(Sa

(c)1Sb
(c))/^N&k, i.e.,

a221

2
→G15 ln 2211 (

p52

`
~ ln 2!p

p!
ap2exp~a221!1a2 ,

~34!

and ~ii ! that the RA@a 2 sign is missing in Eqs.~40! and
~41! of Ref. @5## be replaced by the RRA; i.e.,

S(r )

^N&k
5

1

2rE dkH ln@11rh̃~k!#2rh̃~k!1
@rh̃~k!#2

2 J ~35!

is replaced by Eq.~32!. Let us discuss them.
~A! The first difficulty is that theG1 term depends on al

the r-body density fluctuationsa r and so must be either ap
proximated by a~guessed! functional of a2 or its contribu-
tion from p53 on neglected. As we think it is important t
have the right limiting behavior, we choose to approxim
G185(p>3 by a functional ofa2 that obeys the known con
straints, i.e., the high-density (G1850) and low-density@G18
512 ln 22(ln 2)2/2# limits as well as its first term in a den
sity expansion@(a221)/2#. We therefore propose forG18 a
quadratic expansion ina2 and thus obtain, forG1,

G15 ln 2211
a2

2
@324 ln 22a2~122 ln 2!#

2exp~a221!1a2 , ~36!

which has the correct limits at low and high densities as w
as the correct limiting slope of 1/2. A more sophisticat
approach, wherea3 is evaluated and a proposal for the r
s.

e

n
oes
p-
a-

al

e

e

ll

maining sum made, was discarded because, as the lea
coefficient of G18 is (ln 2)3/3!'0.055, a highly accurate
three-body function is needed for the improvement to ma
sense. In this way,G1 envelopes the line (a221)/2. There
is, in this context, another point worth mentioning. While t
contribution

G252
r

2E dr @g~r !ln g~r !2h~r !# ~37!

converges quite rapidly~as a function of the upper integra
tion limit! @7#, even in the high-density case, in our propos
we are forced to a separated evaluation of both integrals
each one of them has a oscillating and slowly decaying ta
high densities.

~B! Figures 1~a! and 1~b! show, for two different densities

FIG. 1. ~a! Results forh50.20 are plotted. Curvea ~dash–
double-dotted line! shows the argument of the logarithm in th

RRA, i.e.,L(k)512@rh̃(k)#2, the dotted curvesb andd ~heavier
dots! show the integrand~including the factor 2pk2/r) and the
integral, respectively, for the RA as a function ofk, and the dashed
curvesc ande give the same information for the RRA. The units
k correspond to a HS diameter of 1 and the Fourier transform

been defined ash̃(k)5*drh(r )exp(2pik•r ). ~b! Results for h
50.35 are plotted and the meaning of the different curves is
same as in~a!.
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6582 PRE 62J. A. HERNANDO AND L. BLUM
h (5pr/6), medium-low (h50.2) and medium-high (h
50.35), the behavior of the more relevant functions appe
ing both in the RA and the RRA. All of them were evaluat
using the analytical solution of Wertheim and Thiele@22# of
the Percus-Yevick~PY! approximation@23#. Depicted are~i!

L(k)512@rh̃2(k)#2, the argument of the logarithm in th
RRA, ~ii ! the integrands of both approximations, and~iii !
their integrals. Important remarks are the following:~1!
when the density increasesL(k) develops a deep well fo
k'1, ~2! due to this peak, the RRA outgrows the RA, a
~3! the oscillations are longer ranged in the RA than in
RRA. The behavior of the RRA integrand underlines t
importance of having an accurate description of the first p
in h(r ). In fact, for h*0.4, L(k) becomes negative, pin
pointing the breakdown of the PY approximation which,
though remarkably accurate for low and medium densities
well known to have essential failures at high densities, e
underestimates~by &10% ath50.3) the contact value o
h(r ) ~see, e.g., Ref.@24#!.

Last, let us mention the importance of the neglected thr
or more-particle contribution. Baranyai and Evans@25# have
estimated the three-particle contribution to the entropy of
and, although the expression they use should be modified
its inclusion in our formalism~there are compressibility con
tributions already included!, their figures show, nevertheles
that the three-particle terms are already sizable forh*0.2.

For all these reasons we decided to test our entropy
pression for hard spheres ath up to 0.3. As the PY approxi
mation underestimates the contacth(r ) but lends itself to
easy calculation of Fourier transforms and, on the ot
hand, the short-range behavior ofh(r ) can be easily obtained
from Monte Carlo~MC! simulations, while a reliable Fourie
transform requires accurate knowledge of the long-range
havior ofh(r ), we decided to use, on this density range, P
results for Fourier space and MC results forr space. More
comprehensive results need not only MC extensive and
able results, but also an estimation~at the very least! of the
three-body term. This will be discussed in a future pap
Table I summarizes our numerical results and shows
there is an improvement at low densities. For larger dens
a more complete study is needed, and will be left for futu
communications. It is also possible that the relation betw
the RA and RRA is similar to the one between the PY a
HNC equations; i.e., although the HNC is a more compl
~in the sense of including more diagrams in its expansi!
theory than the PY, however, the PY equation yields be
results for HS than the HNC equation, while the opposite
true for softer potentials. This is due to cancellations a

TABLE I. Entropy results as a function of the densityh, col-
umns labeledSCS, SG2, SRA, andSRRA, correspond to the~‘‘exact’’ !
Carnahan-Starling equation~37! @26# RA, and RRA, respectively.

h SCS SG2 SRA SRRA

0.1 20.456 20.412 20.417 20.453
0.15 20.7374 20.641 20.763 20.757
0.2 21.063 20.901 21.103 21.115
0.25 21.444 21.210 21.532 21.562
0.3 21.898 21.596 22.070 22.130
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therefore, we will analyze our expression@Eq. ~33!# for soft
potentials in a forthcoming work.

VI. CONCLUSIONS

Through the discussion of the conceptual structure of
exact entropy expansion in terms of the distribution funct
we have proved two main results, summarized in Eqs.~12!
and ~33!. We used two complementary points of view: th
functional and the numerical one.

On the functional side, we have shown that, in the th
modynamic limit, the compressibility term only depends~as
a functional! on the one-body distribution function@Eq.
~12!#. Therefore, this functional dependence is such tha
only enters in the constant density constraint and, in t
way, the conceptual structure of the equation for the entr
is significantly simplified. As our results apply to the fu
entropy functional, they are valuable to any functional mi
mization, such as, e.g., those in@5,6#. It can also be men-
tioned that this theorem does not conflict with the work
Laird and Haymet@12#. They obtained the correct Debye
Huckel low-density expression for the entropy by includi
theS( id), S(ln), andS(r ) plus the compressibility related con
tribution of Eq.~10!. As this term and, in fact, all the sum
we did vanish whenr→0 ~including the one that renormal
izes the RA!, there is no contradiction between ours a
theirs results. Last, as this result does not depend on
potential, it is also valid for the associative Wertheim
Ornstein-Zernike equation@16,17# as well as for systems
with directional forces@18#. Turning now to Eq.~33! we see
that, if, for just a moment, we neglect the renormalization
the RA, the contribution due to ther-body density fluctua-
tions gives not only a theoretical understanding of the nat
of the incompressible approximation, but also a descript
that is essentially correct in the low- and high-density lim
~0 and ln 2212e21, respectively!. As the RA grows quite
steeply when the density increases@12,13#, one would expect
that its renormalization has the right asymptotic behav
however, this is not obvious at all and more careful~both in
extension and potentials involved! numerical studies are
needed. Let us also mention that these results extend triv
to mixtures~see, e.g.,@13#! and, in this case, it is more con
venient to work with the entropy per unite volume. Th
functional provides a robust and systematic way to deve
fully analytical theories of liquids@19–21#, which will be
examined in future work.

From a numerical point of view, we have discussed
difficulties associated with the entropy equation and used
a very rough and preliminary way, known results for HS
show, on the one hand, how an improvement at low dens
is obtained and, on the other hand, to suggest that a m
definite study should be done with greater care of the ac
racy and internal consistency of the pair function used as
input. The numerical work presented in this paper is jus
rough test that uses numerical simulations and PY result
a not altogether consistent way. In this context, it can
mentioned that the main difficulty is to obtain a good enou
extrapolation ofh(r ) @now both contributions to Eq.~37!
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must be evaluated separately# in order to reliably evaluate
both its integral and Fourier transform at high densities. T
will be discussed in a paper now in preparation where
analytical description of the HS fluid is used. It has also be
mentioned that work on a soft potential can help to elucid
the relative numerical accuracy of both the RA and the RR
r,

R

is
n
n
e
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