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A functional for the entropy that is asymptotically correct both in the high- and low-density limits is
proposed. The new form i§= S0+ SN+ 50+ 5 where the tern8® depends on the-body density
fluctuationsa,, and has the forn©/k=(N){In2—1+3;_, (In 2)’/p! a,—[exp(a,—1)—a,]}+S S renormal-
izes the ring approximatio("). This result is obtained by analyzing the functional dependence of the most
general expression of the entropy. Two main results¥6 are proved{i) In the thermodynamic limit it is
only a functional of the one-body distribution function afi by summing to infinite order the leading
contributions in the density a numerical expression for the entf&oy (33)] with a renormalized ring ap-
proximation is obtained. The relation of these results to the incompressible approximation for the entropy is
discussed and preliminary numerical results on hard spheres are presented.

PACS numbs(s): 05.20-y, 65.50+m

[. INTRODUCTION low-density regimg He then concluded that the dilute gas
and dense liquid regimes occupy different regions of the
Entropy is one of the very important and challenging ther-phase space. These conclusions have been critidized
modynamic quantities in statistical mechanics because it dd-aird and Hayme{12] have extended the RA to mixtures
pends on all the-particle distribution functions. The prob- and applied it to electrolytes. They found that the correct
lem is to obtain equations that are both accurate anghebye-Huckel expression for the entropy in the low-
manageable from a theoretical and numerical point of viewgoncentration limit is obtained when the RA is included.
Among the exact expressions we cite the classical work ofhey have also discussed the incompressible approximation
Nettleton and Greefl] and, more recently, the ones of one j; gense fluid§13], and proposed an expression that differs

of us(J.A.H), Pouskari, and Prestipino and Giaquif@a-4].  fom the one of Wallace, and applied it with good numerical
Approximate expressions have also been der[&8-§. In results.

[5] we have shown how an infinite subset of ter(depen-
dent exclusively on the one- and two-body distribution func-
tions) can be analytically summed, giving rise to the so

Summarizing, these works show that, at low densities,
inclusion of the RA gives a very accurate entropy equation
called ring approximatiolRA) and, through a minimization \?v?li(:hgtl?\?ohmgéizistlil;f ?hpeprr(i):lT::ﬁnolvse?eos‘;%eastsez t\a/;ogﬁ:
of the free energy functional, the well-known HNC approxi- ' gn d » theé ring U

tropy and the incompressible approximation is reasonably

mation [9] is obtained as an optimized superposition ap- It has b dth h bod
proximation. Later on, Busht al.[6] derived sets of integral accurate. It has been suggested that more than two-body cor-

equations by analyzing several levels of approximation to th&€lations must be incorporated in order to have an accurate
grand potential function and, in a recent and very interesting*Pansion and, in this respect, Puoskari's wi8kis quite
article, Puoskar[3] extends the RA to three-particle func- Promising. Itis the purpose of this article to elaborate on the
tions, showing how the HNC2 equations either of the Wer-compressibility-related contribution to entropy and improve
theim [10] or Baxter[11] variety can be obtained. Baranyai the entropy expansion when truncated to the pair distribution
and Evang7] showed that, even though the derivations arelevel. In Sec. Il we discuss the conceptual structure of the
done in the grand canonical ensemble, the entropy equatiogitropy when written as a functional of thebody distribu-
are, in fact, ensemble invariants if local expressions are useiibn function. In Sec. Il it is shown by functional differen-
for the entropy. In this way, the comparison with canonicaltiation that the compressibility-related contribution only de-
ensemble numerical simulations is justified. They also anapends on the one-body distribution function as well as on
lyze the convergence range of some needed integrals showermodynamic parameters and, in Sec. IV, by summing
ing how this range increases at high densities. Wal[&e three subsets of terms, we shed some light on the nature of
also worked with the same type of expression and, by anahe incompressible approximation, show how the correct
lyzing the behavior of density fluctuations, proposed an indow- and high-density limits can also be obtained, and
compressible approximation for the entropy of dense fluidgpresent our entropy equatipkg. (33)]. In Sec. V some nu-
(which, as Wallace himself states, is decidedly wrong in themerical issues related to this equation are discussed, with
hard sphere¢HS) as the prototypical system, showing that
the preliminary numerical results are promising but that
*Email address: hernando@cnea.gov.ar more extensive studies are also needed. In Sec. VI we
TEmail address: Iblum@upracd.upr.clu.edu present our conclusions.
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Il. ENTROPY STRUCTURE which introduces the family oA, functions which, when
different from zero, correct for the difference with the GSA.

We can think on two different criteria for the analysis of
They can also be written as

the entropy. The first one can be called the functional crite-
rion; it is the one we take when interested in the entropy A ({p})=e“piPh 1. (6)
dependence on distribution functions, e.g., when a varia- P

tional principle is formulated. The second point of view is This SI™ contribution is the one that, when functionally dif-
the numerical one; i.e., the main goal is numerical accuracyerentiated, gives rise to the ¢ncontribution in the integral
It is clear that it is not necessarily true that the same expressquations.

sion will fulfill satisfactorily both goals. In particular, the (iii ) The ring term, which in its simplest, two-body ver-
incompressible approximatidsee Eq.(10)] is numerically  sion, is

correct at high densities, but has the wrong behavior at low

densities and also lacks a sound theoretical foundation. s o1 — )P 1
When the entropy dependence on all theody distribu- .~ =5 2 f d{p} H n1(i)hy(12)hy(23)- -
tion functions is explicitly written, we obtain an approximate P=
expression with the following distinct structure contributions X h,(pl), (7)
[3,5].
(i) The ideal gas contribution and it can be summed in homogeneous systéhksee Eq.

(35]. This term is responsible for the contributibp—c, in
5 the integral equations. The three-body version is derived in
——ln(pk3)} @ 3]
(iv) The compressibility related contribution

lid)
+« —(\N)

wherep is the number density andthe thermal wavelength.

" . . W g©) 1 P
(ii) The ever present logarithmic contribution i E af d{p}Hl (DA ({pHTp({n}), (8
S(ln) '
== 2 d{pinp({PH wp({Ph), 2)
gp—l gp—3' o
{p—1}C{p} {p—3}C{p}
where n,({p}) is the p-particle distribution function and Lp(inph) = ©

|
IN

wp(1p}) the irreduciblep-body contribution to the potential
of average force. More specifically, the link with the more

usual notation is Its first term is essentially the compressibilit {=h,) and
the sequence of products in E(R) stops when reaching

Op-2
{p—2C{p} {p—4c{p}

0. ((p) = np({p}) (3  cithergs or go. As far as we know there are no previous
P L studies of the whole series given in E®); the compress-
; ny(i) ibility approximation focuses on the first term of this series,
which, for a one-component homogeneous system, is
(c
ny IL mpo I npye i N Bf drhz(r)=u( 1+ay). (10
goptlp = _P7ACRE | raClp L@ 3
Np-1 Np_g - As in the dense liquid limitw,<1, the incompressible ap-
{p-1c{pt {p=sicip proximation considers:,=0 in the wholep-T space.

As usual, we have thaf,= 1+ h, and, through the use of the

generalized superposition approximati@SA) [14], we can

write that, e.g., In this section we prove that, in the thermodynamic limit,
all the functional derivatives of the compressibility contribu-
tion with respect to the distribution functions can be summa-

IIl. FUNCTIONAL DEPENDENCE

93({3}):[1+A3({3})]{2}1;[{3} 92({2}), rized in the equation
sS9/k P
JI oattah Tt
9({4)=[1+A,({) ] ——"— Therefore,
I1 g({2)

- [[atmnyan+cpm+oe ™). a2

=[1+84({4b] 11 [1+85((301 11 g2({2)),
Eeia Zcia C is an integration constant as far as the functional integra-

(5)  tion refers but, in fact, it depends ¢nT.
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The derivation is straightforward. The origin of the com- IV. SERIES SUMMATION

pressibility termS'® is quite clear and Eq$38)—(41) of Ref. For this reason we will cut the GSPEq. (4)] after the

[2] are the equations to look at. Equati®8) is our Eq.(10) . o . i )
and in Eqgs.(39—(41) we see that each one of them has"[hlro_l-order terms; in this wayg, can be written in two
equivalent forms

among other terms, the integrdllin,g,d{p}. When the
GSA for g, is used Eq. (9)], the integral decomposes into a go({pH)
sum of two integralgIIn,I" [ 1+ A ]d{p}. The term with- P

out A, contributes to the ring approximation plus neglected

terms(such as those shown in R€8]) and the term with\, 1+{2}2C{p} hz({Z}H{g};{p} h3({3h)+ - -hp({p}),
contributes taS(©). - - -
As I', can also be written as H [1+A5({3))] H [1+hy({2D)].
{3tc{p} {21c{p}
Np-1 Np_3" " (16)
I _ Ap—13cip} {p—3Cip}
p({Np}) = ' In Eq. (13) for the compressibility contribution we will
B Np—2 _14_[ Np—g--- sum to infinite order three subsets of terms. These subsets are
te=3cin {p=4cip} clearly identified in thegp=3 summand of Eq(13), i.e.,
using Eqgs(4) and(6) we conclude that S(sc) 1 3
50 == 5 ¢ nuh|gsttan- TT 1+natiz)
1 k3! =1 123
=2 | dip}
p=2 p: 1 3
= 51| 68T ) hattsh =3, T ot
' i=1 1=1 k#i
Np-1 Np-3
_ - Tcip} {p—3}C{p}
’ ' ~h,(12)h,(13)h,(23)|. (17)
np_2 Ng_4---
{p—2;C{p} {p—4}C{p}
(13 (A) The first subset includes the contribution of the inte-

_ _ . grals [hyd{p},p=2. The series is
It is somewhat clear that each one of these integrals is related
to p-body density fluctuations but a clearer explanation is to Sﬁf) 1 P * (Cp)
be found in the next section. This explains the origin of T:E —J d{p}H nl(i)hp({p})zE — (18
naming this contribution as compressibility related. Written p=2 P =1 p=2 P
in this way it is straightforward to show that the functional
derivatives are

o

The moment-cumulant relatid2] is

M
(© |
(;il(il)(:p; (_1)p<l¥ 1+0 ﬁ”:—ﬂo(ew), CM({M})=hM({M})i:H1 ny(i)
(14 M K
8@k 1 (NP 1 =k21{k{mi}m}(—1)"‘1(k—1)!ilj[l N ({M;}).
- = _ py I N —(N) =
o) 2 "V |10 (N)” Ole™), 9
(19

Here, the partition of the coordinate s} in k disjoint

and we arrive at Eq11). subsets{m;}y, 1<i=<k is symbolized by{k{m},,} and
This result shows that, in the thermodynamic limit, thethereforeszzl{k{mi}M} indicates the sum over all the par-

compressibility term does not contribute to any set of equatitions in k subsets and for eadhis 1<i<k. In this way

tions we may derive by functional differentiation of a func- (Cp) is related to the integrakn, )= fdp;n;, . On the other

tional that includes the entropy; it only contributes to the : k .
constraint of fixed density. Therefore, while in the set ofhand.(ny) can be expanded in terms gf) [15]:

equations derived from variational principles we can safely 0

ignore the compressibility term in front of all the other terms, _ _ -~ _ K

when undertaking the numerical computation of the entropy (np)=(N(N=1)---(N p+1)>—k21 s(pl{N) (20
we do not see sound reasons suggesting that we ignore it. Let

us mention that it is possible that, due to partial cancellafor p=1, wheres(p,k) are the Stirling numbers of first kind.
tions, a simple dismissal of a whole series of terms can beDne of its definitions is that£ 1)P~*s(p,k) is the number of
numerically speaking, more effective than a partial summapermutations op elements which contain exactk/cycles.
tion. The main inconvenience of this dismissal of terms is itSThey satisfy the recurrence relation

uncontrollable nature; i.e., we can never be sure of its effec-

tiveness. s(p+1k)=s(p,k—1)—ps(p,k), 1sk=p,
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with starting values (B) When in thepth term of Eq.(13) the expansions
given in Eqgs.(16) are inserted, each, ,k<p expanded in
s(p,0)=s(0K) = on- terms ofh,,A5 and terms like the @N)?a3 which were left

aside in the first partial series included, then all the uncon-

We also define the-body density fluctuationa by nected(in the graph theory senséerms cancel out and the

1, r=1, first two sets of connected diagrams are those depicted in Eq.
=1 (N—(N))") . 21) élozdS\Ne first evaluate the sum of “star” products of
(N '
_ _ SO
The first few(Cp) are then expressed in terms of the = E
and Stirling numbers as p=3
2 T .
(CH=(N)(—1+a)=(N) X s(2i)a;, (22 ~ & .21 J d'f‘l(');li J dkny (k)ha(ik).
i=1 = =
, (27)
(C3)=(N)(2—3ay+ “3):<N>§1 s(3j)ai, (23 Each summand is easily evaluated as
(Co)=(N)(—6+1la,—B6az+ ay)+3(N)?a3 (N) p-1
4 2 stay 2 lI’,[)Z(p_—l)!(—1+012) :
:<N>i§1 S(4i)a;+3(N)2a3. (24 and the second partial sum is
- . (C)
The 3(N)2a3 term and similar ones from higher-ordet,,) i: _ oy
will be included in the next partial sum. In order to sum to k (N)[explap=1) = az]. (28)
infinite order the contribution of eaakhbody density fluctua-
tions we need the resyli5] Its low- and high-density limits are 0 ande !, respec-
tively.
=St k) [In(ler)]t (C) This series is a sum of rings very similar to E@), its
2 tl : first term is given in Eq(17), and, as the symmetry number

of p rings is 2, it can be written as
Therefore, thex, contribution is

s 11 o
n2-1, r=1, et D) —f d{pHLL ni(i)ha(12h5(23)- - hy(p1),
W= . (25) p=3 P i=1
T l(n2)'r, r=2, (29)
and our first partial sum, which includes contributions towhich can be summed for homogeneous systems in the same
infinite order of all thea,, is way as the original ring approximation wgs|:
S(c) (Cp) o (©) a2
- - S (N) = = [pha(K)]
pzz pr N2 2 e @9 ST dk['”[l_th(k)]_th(k)_zT ,

- . . 30
Let us remark on some characteristics of this regit: (30

In2—1 is the contribution in the absence of density fluctua- -~ _ . . .
tions and it is also its high-density limia<1), (i) asa, " crena(k)=/drh(rjexp(2rik-r) is the Fourier transform

.1 whenp—0, Eq.(26) vanishes in the low-density limit, of h,(r) and the integration is ovek space. This contribu-
t|on can be added to the original RA giving rise to a renor-

and(iii) the series is rapidly convergent. Therefore, this sum (1)

goes in the right direction to improve on the |ncompressmlem""“zed ring approximatiofRRA) S*/, which is

approximation, both in its numerical results and in its theo-

retical foundation. This analysis makes also clear why this s B .
contribution is referred to as compressibility related. Last, kK 2 gfz p d{2p}i1:[l n1(i)hz(12)
the o, are easily expressed as integrals of the correlation
functions; the first ones are Xhy(23)- - -hy(2pl), (3D
1 ) a sum over all even-order rings and, for homogeneous sys-
a=1+ N {21 niiyha({2)), tems, the result is

1 S(r)
—2+3a2+wj d{3H T ni(iyhs({3}). =W >Jdk('ﬂ{l [ph2(K) 12+ [ph,(K)19). (32)
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Collecting together the different results obtained, i.e., Egs. 1 — e T T T T T
(26), (28), and (32) with Egs. (1) and(2), we arrive at an r _/ —ia
entropy equation which includes a partial summation of the 08 72 b 7]
compressibility related contribution, i.e., 0.6 N -—-c _
. ,/ R |
S 5 1 o ? -—c ]
=) 5=\ |- 3 = [ dipdny(iphp((ph) _ _
k 2 p=1 p!
02| —
(N) 12 T oK) 12 ' '
+ ——| dk(n{1—[ph,(k)]7}+[pha(k)]*) O ~ A e — —
2p L \\ "“4-'
= (n2)p 02F ';/._:.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T,
n L : ]
+<N)[In 2—1+p§2 o ap] oal ',‘.\_,/. -
]
—(N)[expla,—1) = as]. (33 0 05 1 15 2 2.5( ) 3
k
It can be emphasized that this equation is, although ar(a)
approximate one, a rather general one in the sense that dot ' . —
not depend on any kind of specific, system-related assump | ] I"/'. = ' —-a
tions. In other words, it can be applied, e.g., to the associa: ;' “ Y e b
tive Wertheim-Ornstein-Zernike equati¢h6,17 as well as %5 R -=-c 7
to systems with directional forcg48]. T o od
(1] . ~ ‘.-\. - -~ _‘q-.—--—‘;'é'-—-—--—-.-.-.—--—-—---
hY LN r \ ! "t
V. HARD SPHERES R rov
3 R, N I —
We will discuss some numerical aspects of our proposal’o'5 ‘1 ’5[— \':' Cr ot e i e aans A
by implementing it, in a preliminary way, in the paradig- ) [ : T o e o — — ———
matic system of liquid state theory, i.e., HS. Essentially, we -1~ '-}\ ,'_: 1l -
propose two substitutiongi) that the term &,—1)/2 (or - PN '| |'
—1/2 in the incompressible approximatjobe replaced by .15} 'V.: 1! -
(SE9+ S [(NYK, i.e., i r
- 253 . i3 2 23 3
a—1 In2)P - . -
2 —>F1:In2_1+2 %ap—exﬂaz—l)-l-az, (k)
p=2 P (b)
(34)

FIG. 1. (a) Results forp=0.20 are plotted. Curva (dash—
and (ii) that the RA[a — sign is missing in Egqs(40) and  double-dotted line shows the argument of the logarithm in the

(41) of Ref.[5]] be replaced by the RRA, i.e., RRA, i.e.,A(k)=1—[ph(k)]? the dotted curveb andd (heavier
~ dots show the integrandincluding the factor Zk?/p) and the
s ~ ~ [ph(k)]? integral, respectively, for the RA as a functionlgfand the dashed
W = Z dky In[1+ ph(k)]—ph(k)+ 2 (35 curvesc ande give the same information for the RRA. The units of

k correspond to a HS diameter of 1 and the Fourier transform has

is replaced by Eq(32). Let us discuss them. been defined a$i(k)=fdrh(r)exp(2rik-r). (b) Results for 7

(A) The first difficulty is that thd™; term depends on all =0.35 are plotted and the meaning of the different curves is the
the r-body density fluctuationg, and so must be either ap- same as ira).
proximated by aguessegfunctional of a, or its contribu-
tion from p=3 on neglected. As we think it is important to Maining sum made, was discarded because, as the leading
have the right limiting behavior, we choose to approximatecoefficient of I'; is (In2)¥3!~0.055, a highly accurate
I'1=3,-3 by a functional ofe, that obeys the known con- three-body function is needed for the improvement to make
straints, i.e., the high-density"{=0) and low-densityf '} ~ Sense. In this wayl’; envelopes the lined,—1)/2. There
=1—In2—(In 2)¥2] limits as well as its first term in a den- 1S i .thls.context, another point worth mentioning. While the
sity expansior] (a,—1)/2]. We therefore propose fdr} a  contribution
guadratic expansion i, and thus obtain, fof 4,

. rp=—5 [ dgnmem-nen @

r,=In2—1+ 72[3—4 In2—a,(1-21n2)]
converges quite rapidlyas a function of the upper integra-

—expla,—1)+ay, (36)  tion limit) [7], even in the high-density case, in our proposal

we are forced to a separated evaluation of both integrals and

which has the correct limits at low and high densities as welkach one of them has a oscillating and slowly decaying tail at

as the correct limiting slope of 1/2. A more sophisticatedhigh densities.

approach, wherey; is evaluated and a proposal for the re-  (B) Figures 1a) and Xb) show, for two different densities
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TABLE |. Entropy results as a function of the density col- therefore, we will analyze our expressifiq. (33)] for soft
umns labele®S, 'z, S*4, andSRR” correspond to thé‘exact”)  potentials in a forthcoming work.
Carnahan-Starling equatidB7) [26] RA, and RRA, respectively.

S [ RA RRA
7 s S S S VI. CONCLUSIONS
0.1 —0.456 —0.412 —0.417 —0.453
0.15 —0.7374 —0.641 —0.763 —0.757 Through the discussion of the conceptual structure of the
0.2 —1.063 —0.901 —1.103 —1.115 exact entropy expansion in terms of the distribution function
0.25 —1.444 -1.210 —1.532 —1.562 we have proved two main results, summarized in Efg)
0.3 —1.898 —1.596 —2.070 —2.130 and (33). We used two complementary points of view: the

functional and the numerical one.

On the functional side, we have shown that, in the ther-
n (=mpl6), medium-low (7=0.2) and medium-high 7 modynamic limit, the compressibility term only deper(ds
=0.35), the behavior of the more relevant functions appeara functional on the one-body distribution functiofEqg.
ing both in the RA and the RRA. All of them were evaluated (12)]. Therefore, this functional dependence is such that it
using the analytical solution of Wertheim and Thigk2] of ~ only enters in the constant density constraint and, in this
the Percus-YevickPY) approximatior{23]. Depicted ardi) way, the conceptual structure of the equation for the entropy
A(K)=1—[phy(K)]?, the argument of the logarithm in the is significantly simplified. As our results apply tp the fgll_
RRA, (ii) the integrands of both approximations, afii) eqtropy functional, they are valuable to any functional mini-
their integrals. Important remarks are the following)  Mization, such as, e.g., those [i,6]. It can also be men-
when the density increases(k) develops a deep well for tioned that this theorem does not conflict with the work of
k~1, (2) due to this peak, the RRA outgrows the RA, andLlaird and Hayme{12]. They obtained the correct Debye-
(3) the oscillations are longer ranged in the RA than in theHuckel low-density expression for the entropy by including
RRA. The behavior of the RRA integrand underlines thethe S'®, S!" andS(" plus the compressibility related con-
importance of having an accurate description of the first peakibution of Eq.(10). As this term and, in fact, all the sums
in h(r). In fact, for =0.4, A(k) becomes negative, pin- we did vanish whem—0 (including the one that renormal-
pointing the breakdown of the PY approximation which, al-izes the RA, there is no contradiction between ours and
though remarkably accurate for low and medium densities, isheirs results. Last, as this result does not depend on the
well known to have essential failures at high densities, e.gpotential, it is also valid for the associative Wertheim-
underestimategby =10% at »=0.3) the contact value of Ornstein-Zernike equatiofil6,17] as well as for systems
h(r) (see, e.g., Ref.24)). with directional force$18]. Turning now to Eq(33) we see

Last, let us mention the importance of the neglected threerhat, if, for just a moment, we neglect the renormalization in
or more-particle contribution. Baranyai and Eva@S] have  the RA, the contribution due to thebody density fluctua-
estimated the three-particle contribution to the entropy of HSjgns gives not only a theoretical understanding of the nature

and, although the expression they use should be modified fQ§f {he incompressible approximation, but also a description
its inclusion in our formalisnithere are compressibility con- y,; js essentially correct in the low- and high-density limits

tributions already includedtheir figures show, nevertheless, (0 and In2-1—6 %, respectively. As the RA grows quite

e e e ) e o ovuapy & IEEBY When the censiy crease 13, one o expect
) PY Ahat its renormalization has the right asymptotic behavior;
pression for hard spheres atup to 0.3. As the PY approxi- however, this is not obvious at all and more care¢hdth in
mation underestimates the contddtr) but lends itself to ! . . . .
adr) pxtension and potentials involvedwumerical studies are

easy calculation of Fourier transforms and, on the othe i .
hand, the short-range behavioriir) can be easily obtained needed. Let us also mention that these results extend trivially
’ to mixtures(see, e.g.[13]) and, in this case, it is more con-

from Monte Carlo(MC) simulations, while a reliable Fourier ) : i ;
transform requires accurate knowledge of the long-range be/€nient to work with the entropy per unite volume. This
havior ofh(r), we decided to use, on this density range, Pyfunctional provides a robust and systematic way to develop
results for Fourier space and MC results fospace. More fully analytical theories of liquidg19-21], which will be
comprehensive results need not only MC extensive and rel€xamined in future work.

able results, but also an estimatitat the very leastof the From a numerical point of view, we have discussed the
three-body term. This will be discussed in a future paperdifficulties associated with the entropy equation and used, in
Table | summarizes our numerical results and shows thaa very rough and preliminary way, known results for HS to
there is an improvement at low densities. For larger densitieshow, on the one hand, how an improvement at low densities
a more complete study is needed, and will be left for futureis obtained and, on the other hand, to suggest that a more
communications. It is also possible that the relation betweendefinite study should be done with greater care of the accu-
the RA and RRA is similar to the one between the PY andacy and internal consistency of the pair function used as an
HNC equations; i.e., although the HNC is a more completénput. The numerical work presented in this paper is just a
(in the sense of including more diagrams in its expansionrough test that uses numerical simulations and PY results in
theory than the PY, however, the PY equation yields bettea not altogether consistent way. In this context, it can be
results for HS than the HNC equation, while the opposite is mentioned that the main difficulty is to obtain a good enough
true for softer potentials. This is due to cancellations andextrapolation ofh(r) [now both contributions to Eq(37)
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must be evaluated separateip order to reliably evaluate
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